class: center, middle, inverse, title-slide .title[ # Part 5 ] .subtitle[ ## R Programming ] .author[ ### Jessica Minnier ] .date[ ### 2023-02-07 ] --- class: center, middle # Saving objects --- # Penguins data ```r library(tidyverse) library(janitor) library(palmerpenguins) data(penguins) glimpse(penguins) ``` ``` ## Rows: 344 ## Columns: 8 ## $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel… ## $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse… ## $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, … ## $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, … ## $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186… ## $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, … ## $ sex <fct> male, female, female, NA, female, male, female, male… ## $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007… ``` --- # When we filter/clean/mutate the data - If you're changing the data and you want to use that data later, save your work - Save as new object, *or*, - Save as the same object if you want to overwrite that data frame within R ```r # save as new data frame penguins_f penguins_f <- penguins %>% filter(sex=="female") %>% mutate(bill_ratio = bill_length_mm/bill_depth_mm) # change the ordering of penguins_f and re-save it penguins_f <- penguins_f %>% arrange(bill_ratio) # print out that data frame, but don't save it penguins_f %>% select(sex, contains("bill")) ``` ``` ## # A tibble: 165 × 4 ## sex bill_length_mm bill_depth_mm bill_ratio ## <fct> <dbl> <dbl> <dbl> ## 1 female 33.5 19 1.76 ## 2 female 35.3 18.9 1.87 ## 3 female 34.4 18.4 1.87 ## 4 female 35.9 19.2 1.87 ## 5 female 36.7 19.3 1.90 ## 6 female 34.5 18.1 1.91 ## 7 female 39.6 20.7 1.91 ## 8 female 36 18.5 1.95 ## 9 female 37.6 19.3 1.95 ## 10 female 36.7 18.8 1.95 ## # … with 155 more rows ## # ℹ Use `print(n = ...)` to see more rows ``` --- # Summarizing data (i.e. tabyl, summarize) - `tabyl()` and `summarize()` create new tibbles/data.frames that have summary info - You can save it if you want, but not usually necessary unless you want to use it later! - From `?tabyl`, Value = "Returns a data.frame with frequencies and percentages of the tabulated variable(s). A 3-way tabulation returns a list of data.frames." .pull-left-40[ ```r penguins_f %>% tabyl(species) ``` ``` ## species n percent ## Adelie 73 0.4424242 ## Chinstrap 34 0.2060606 ## Gentoo 58 0.3515152 ``` ] .pull-right-60[ ```r # save output as a tibble penguins_f_table <- penguins_f %>% tabyl(species) # we can see this is a tibble! glimpse(penguins_f_table) ``` ``` ## Rows: 3 ## Columns: 3 ## $ species <fct> Adelie, Chinstrap, Gentoo ## $ n <int> 73, 34, 58 ## $ percent <dbl> 0.4424242, 0.2060606, 0.3515152 ``` ```r class(penguins_f_table) ``` ``` ## [1] "tabyl" "data.frame" ``` ] --- # Using summaries later ```r penguins_f_table %>% arrange(n) ``` ``` ## species n percent ## Chinstrap 34 0.2060606 ## Gentoo 58 0.3515152 ## Adelie 73 0.4424242 ``` Nice printing: ```r penguins_f_table %>% gt::gt() ```
species
n
percent
Adelie
73
0.4424242
Chinstrap
34
0.2060606
Gentoo
58
0.3515152
--- # Using summaries later You can also save your summaries to excel or csv files: ```r # one long pipe penguins_f_table %>% arrange(n) %>% write_csv(file = "table_of_species_in_females.csv") # or save as tibble object and then write tibble to csv file penguins_f_table <- penguins_f_table %>% arrange(n) write_csv(penguins_f_table, file = "table_of_species_in_females.csv") ``` --- # "Printing" or "viewing" Some things you *__don't__* usually want to save - `glimpse()` prints a snapshot of your data, not useful to save - `head()` or `tail()`, there's almost no reason to save just the first few lines of your data, except for educational purposes! - Similarly, you can pipe on `nrow()` or `dim()` or `colnames()` or `class()` and so on, these are pulling out meta-data/information from your data; you can save this as an object but make sure you know what the output is! (probably a vector of information) - `skim()` prints a visual summary of your data, you can save it if you want to do fancy things with it - `view()`/`View()` pops up a window that shows your data, don't save this and don't keep this code in your Rmd --- ### glimpse ```r # when you save this, it prints it, and then you could print it again glimpse_out <- glimpse(penguins_f) ``` ``` ## Rows: 165 ## Columns: 9 ## $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel… ## $ island <fct> Torgersen, Biscoe, Torgersen, Biscoe, Torgersen, Bis… ## $ bill_length_mm <dbl> 33.5, 35.3, 34.4, 35.9, 36.7, 34.5, 39.6, 36.0, 37.6… ## $ bill_depth_mm <dbl> 19.0, 18.9, 18.4, 19.2, 19.3, 18.1, 20.7, 18.5, 19.3… ## $ flipper_length_mm <int> 190, 187, 184, 189, 193, 187, 191, 186, 181, 187, 19… ## $ body_mass_g <int> 3600, 3800, 3325, 3800, 3450, 2900, 3900, 3100, 3300… ## $ sex <fct> female, female, female, female, female, female, fema… ## $ year <int> 2008, 2007, 2007, 2007, 2007, 2008, 2009, 2007, 2007… ## $ bill_ratio <dbl> 1.763158, 1.867725, 1.869565, 1.869792, 1.901554, 1.… ``` Print it now (but really, don't do this, there's no point): ```r glimpse_out ``` ``` ## # A tibble: 165 × 9 ## species island bill_length_mm bill_d…¹ flipp…² body_…³ sex year bill_…⁴ ## <fct> <fct> <dbl> <dbl> <int> <int> <fct> <int> <dbl> ## 1 Adelie Torgersen 33.5 19 190 3600 fema… 2008 1.76 ## 2 Adelie Biscoe 35.3 18.9 187 3800 fema… 2007 1.87 ## 3 Adelie Torgersen 34.4 18.4 184 3325 fema… 2007 1.87 ## 4 Adelie Biscoe 35.9 19.2 189 3800 fema… 2007 1.87 ## 5 Adelie Torgersen 36.7 19.3 193 3450 fema… 2007 1.90 ## 6 Adelie Biscoe 34.5 18.1 187 2900 fema… 2008 1.91 ## 7 Adelie Biscoe 39.6 20.7 191 3900 fema… 2009 1.91 ## 8 Adelie Dream 36 18.5 186 3100 fema… 2007 1.95 ## 9 Adelie Dream 37.6 19.3 181 3300 fema… 2007 1.95 ## 10 Adelie Torgersen 36.7 18.8 187 3800 fema… 2008 1.95 ## # … with 155 more rows, and abbreviated variable names ¹bill_depth_mm, ## # ²flipper_length_mm, ³body_mass_g, ⁴bill_ratio ## # ℹ Use `print(n = ...)` to see more rows ``` --- ### skim from `?skim`: Value = "A skim_df object, which also inherits the class(es) of the input data. In many ways, the object behaves like a `tibble::tibble()`." ```r # when you save this, it doesn't print it, but you can print it later skim_out <- skimr::skim(penguins_f) ``` Now you can print it (this gets cut off on the slide) ```r skim_out ``` Table: Data summary | | | |:------------------------|:----------| |Name |penguins_f | |Number of rows |165 | |Number of columns |9 | |_______________________ | | |Column type frequency: | | |factor |3 | |numeric |6 | |________________________ | | |Group variables |None | **Variable type: factor** |skim_variable | n_missing| complete_rate|ordered | n_unique|top_counts | |:-------------|---------:|-------------:|:-------|--------:|:-------------------------| |species | 0| 1|FALSE | 3|Ade: 73, Gen: 58, Chi: 34 | |island | 0| 1|FALSE | 3|Bis: 80, Dre: 61, Tor: 24 | |sex | 0| 1|FALSE | 1|fem: 165, mal: 0 | **Variable type: numeric** |skim_variable | n_missing| complete_rate| mean| sd| p0| p25| p50| p75| p100|hist | |:-----------------|---------:|-------------:|-------:|------:|-------:|-------:|-------:|-------:|-------:|:-----| |bill_length_mm | 0| 1| 42.10| 4.90| 32.10| 37.60| 42.80| 46.20| 58.00|▅▅▇▂▁ | |bill_depth_mm | 0| 1| 16.43| 1.80| 13.10| 14.50| 17.00| 17.80| 20.70|▇▃▇▇▁ | |flipper_length_mm | 0| 1| 197.36| 12.50| 172.00| 187.00| 193.00| 210.00| 222.00|▂▇▃▃▃ | |body_mass_g | 0| 1| 3862.27| 666.17| 2700.00| 3350.00| 3650.00| 4550.00| 5200.00|▃▇▂▃▃ | |year | 0| 1| 2008.04| 0.81| 2007.00| 2007.00| 2008.00| 2009.00| 2009.00|▇▁▇▁▇ | |bill_ratio | 0| 1| 2.61| 0.50| 1.76| 2.16| 2.54| 3.12| 3.49|▇▇▅▆▇ | --- You can `glimpse()` the skim output because it's deep down a tibble! ```r class(skim_out) ``` ``` ## [1] "skim_df" "tbl_df" "tbl" "data.frame" ``` ```r glimpse(skim_out) ``` ``` ## Rows: 9 ## Columns: 15 ## $ skim_type <chr> "factor", "factor", "factor", "numeric", "numeric", … ## $ skim_variable <chr> "species", "island", "sex", "bill_length_mm", "bill_… ## $ n_missing <int> 0, 0, 0, 0, 0, 0, 0, 0, 0 ## $ complete_rate <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1 ## $ factor.ordered <lgl> FALSE, FALSE, FALSE, NA, NA, NA, NA, NA, NA ## $ factor.n_unique <int> 3, 3, 1, NA, NA, NA, NA, NA, NA ## $ factor.top_counts <chr> "Ade: 73, Gen: 58, Chi: 34", "Bis: 80, Dre: 61, Tor:… ## $ numeric.mean <dbl> NA, NA, NA, 42.096970, 16.425455, 197.363636, 3862.2… ## $ numeric.sd <dbl> NA, NA, NA, 4.9034759, 1.7956809, 12.5007760, 666.17… ## $ numeric.p0 <dbl> NA, NA, NA, 32.100000, 13.100000, 172.000000, 2700.0… ## $ numeric.p25 <dbl> NA, NA, NA, 37.600000, 14.500000, 187.000000, 3350.0… ## $ numeric.p50 <dbl> NA, NA, NA, 42.800000, 17.000000, 193.000000, 3650.0… ## $ numeric.p75 <dbl> NA, NA, NA, 46.200000, 17.800000, 210.000000, 4550.0… ## $ numeric.p100 <dbl> NA, NA, NA, 58.000000, 20.700000, 222.000000, 5200.0… ## $ numeric.hist <chr> NA, NA, NA, "▅▅▇▂▁", "▇▃▇▇▁", "▂▇▃▃▃", "▃▇▂▃▃", "▇▁▇… ``` --- See `?skim` for examples on what you can do with `skim()` output, as well as the [skimr vignette](https://cran.r-project.org/web/packages/skimr/vignettes/skimr.html) ```r skim_out %>% filter(n_missing > 0) ``` ``` ## # A tibble: 0 × 15 ## # … with 15 variables: skim_type <chr>, skim_variable <chr>, n_missing <int>, ## # complete_rate <dbl>, factor.ordered <lgl>, factor.n_unique <int>, ## # factor.top_counts <chr>, numeric.mean <dbl>, numeric.sd <dbl>, ## # numeric.p0 <dbl>, numeric.p25 <dbl>, numeric.p50 <dbl>, numeric.p75 <dbl>, ## # numeric.p100 <dbl>, numeric.hist <chr> ## # ℹ Use `colnames()` to see all variable names ``` ```r skim_out %>% filter(skim_type == "numeric") %>% select(skim_variable, numeric.mean) ``` ``` ## # A tibble: 6 × 2 ## skim_variable numeric.mean ## <chr> <dbl> ## 1 bill_length_mm 42.1 ## 2 bill_depth_mm 16.4 ## 3 flipper_length_mm 197. ## 4 body_mass_g 3862. ## 5 year 2008. ## 6 bill_ratio 2.61 ``` --- ### view - Use `View` or `view()` interactively, don't include this code in your Rmd, and don't save it as an object! ```r View(penguins_f) # this will pop up every time you knit, not necessary pview <- penguins_f %>% View() # this is not helpful ``` pview is `NULL` because `View()` produces NO output (no value) ```r pview ``` ``` ## NULL ``` --- # Saving ggplot - Save a ggplot *as an object* if you want to "call it" later to add more layers, or if you want to save it *as an image file* (i.e .png, .pdf, .tif, etc) on your computer - `ggsave()` by default saves the last plot printed to a file, but to be extra careful you can use the object name ```r # save as object p_boxplot; will not print out plot p_boxplot <- ggplot(penguins, aes(x = species, y = bill_length_mm, fill = sex)) + geom_boxplot() # it's a ggplot object class(p_boxplot) ``` ``` ## [1] "gg" "ggplot" ``` ```r # print the plot in output p_boxplot ``` ``` ## Warning: Removed 2 rows containing non-finite values (stat_boxplot). ``` ![](05-saving-objects-vs-summaries_files/figure-html/unnamed-chunk-17-1.png)<!-- --> --- Now we can add additional layers, and/or save it as a png file! ```r # save as png (default location is same folder where Rmd is) ggsave(p_boxplot, file = "p_boxplot.png", height = 6, width = 5) ``` ``` ## Warning: Removed 2 rows containing non-finite values (stat_boxplot). ``` ```r # add layers p_boxplot + theme_minimal() + labs(title = "Add layers to my boxplot!", x = "") ``` ``` ## Warning: Removed 2 rows containing non-finite values (stat_boxplot). ``` ![](05-saving-objects-vs-summaries_files/figure-html/unnamed-chunk-18-1.png)<!-- --> --- Want to save that plot? ```r p_boxplot <- p_boxplot + theme_minimal() + labs(title = "Add layers to my boxplot!", x = "") ggsave(p_boxplot, file = "p_boxplot_minimal.png", height = 6, width = 5) ``` ``` ## Warning: Removed 2 rows containing non-finite values (stat_boxplot). ``` ```r p_boxplot ``` ``` ## Warning: Removed 2 rows containing non-finite values (stat_boxplot). ``` ![](05-saving-objects-vs-summaries_files/figure-html/unnamed-chunk-19-1.png)<!-- --> --- # Objects - All of this has to do with classes and objects in R, which is an object-oriented programming language. - `class(objectname)` tells us what kind of structure it is and how we can use it - Many functions output a unique kind of object ```r tmpfit <- lm(bill_length_mm ~ species, data = penguins) class(tmpfit) ``` ``` ## [1] "lm" ``` ```r # see Value section of ?lm ``` - If you want some bedtime reading on this, start with the [Advanced R textbook's "OO field guide"](http://adv-r.had.co.nz/OO-essentials.html)